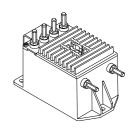


Voltage Transducer CV 3-500


For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 350 \text{ V}$

Electrical data

\mathbf{V}_{PN}	Primary nominal r.m.s. voltage	350	V
V _P	Primary voltage, measuring range	0 ± 500	V
V s	Secondary analog voltage @ V _{P max}	10	V
$\mathbf{K}_{\mathrm{N}}^{\mathrm{c}}$	Conversion ratio	500 V / 10 V	
R,	Load resistance	³ 1	$k\Omega$
C	Capacitive loading	£ 5	nF
V c	Supply voltage (± 5 %)	± 15	V
I _c	Current consumption	$32 + V_{s}/R_{L}$	mΑ
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	6	kV
V e	R.m.s. voltage for partial discharge extinction @ 10 pC	2	kV

Accuracy - Dynamic performance data

			Тур	Max	
$\mathbf{X}_{_{\mathrm{G}}}$	Overall accuracy @ V _{P max}	$T_A = 25^{\circ}C$		± 0.2 ± 0.6 ± 5.0 ± 13.0	%
		- 40°C + 85°C		± 0.6	%
V_{\circ}	Offset voltage @ $\mathbf{V}_{P} = 0$	$T_A = 25^{\circ}C$		± 5.0	m۷
		- 40°C + 85°C		± 13.0	m۷
t,	Response time 1) @ 90 % of V _{PN}		0.3		μs
dv/dt	dv/dt accurately followed		500		V/µs
f	Frequency bandwidth (- 1 dB) @ \	V _{PN}	DC :	300	kHz

General data

$T_{_{A}}$	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 45 + 90	°C
P	Total primary power loss	3.1	W
$\mathbf{R}_{\scriptscriptstyle 1}$	Primary resistance	40	$k\Omega$
m	Mass	560	g
	Standards 2)	EN 50155	

Features

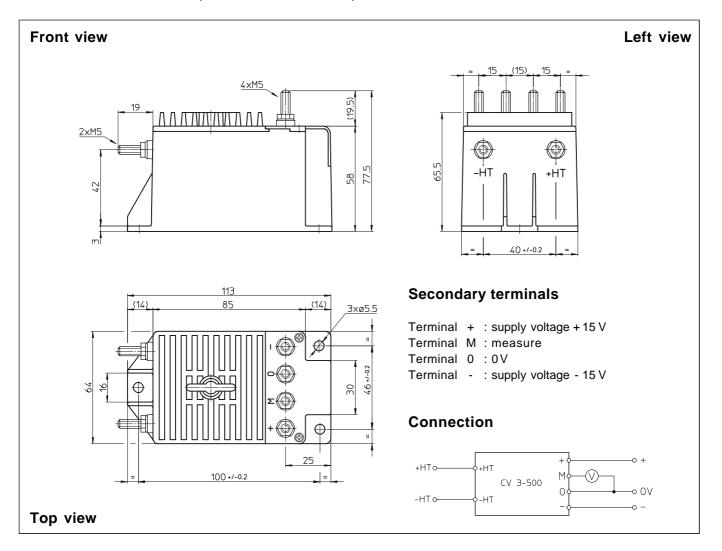
- Closed loop (compensated) voltage transducer
- Insulated plastic case recognized according to UL 94-V0
- Patent pending.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- Low response time
- High bandwidth
- High immunity to external interference
- Low disturbance in common mode.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.


Notes: 1) With a dv/dt of 500 V/µs

061127/9

²⁾ A list of corresponding tests is available.

Dimensions CV 3-500 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Fastening torque
- ± 0.3 mm
- 3 holes \varnothing 5.5 mm M5 threaded studs
- M5 threaded studs
- 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \mathbf{V}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT.
- CEM tested with a shielded secondary cable. Shield connected to 0 V at both ends, or disconnected.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.